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An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a
general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of
the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and
the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds
numbers are provided, showing that old and well-established limiting dispersion relations �J. W. S. Rayleigh,
The Theory of Sound �Dover, New York, 1945�; S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability
�Dover, New York, 1961�� should be used with caution. In the creeping flow limit, the analysis shows that, if
the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small
�compatible with the continuum hypothesis� if the coflowing liquid moves faster than a critical velocity.
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Experience teaches that, contrarily to what occurs in liq-
uid jets, gas jets surrounded by liquid �1–5� are short and
extremely prone to local bubbling. Their strong tendency to
become absolutely unstable compared to their inverse
counterparts—the liquid jets—is well known. The roots of
this symmetry breakdown are here analyzed in detail on the
basis of a general model �5�. This model is used to analyze
the linear convective-absolute �C-A� instability transition of
a gas jet in an unbounded coflowing viscous liquid stream
with density �l and viscosity �l. The asymptotic analysis
shows hollow jets to be absolutely unstable for any finite
values of the Reynolds �Re� and Weber �We� numbers, in
contrast to the liquid jet in vacuo limit. Strikingly, however,
we found that the universality of the absolutely unstable na-
ture of hollow jets is not predictable using the same
asymptotic approximative paths valid for liquid jets in
vacuo: �6� our analysis evidences former simplifications as-
ymptotically valid for the liquid jet case to be invalid in the
hollow jet case, revealing the roots of breakdown.

Analogously to other paradigmatic results in fluid dynam-
ics �e.g., D’Alembert’s paradox �7��, the consideration of an
inner fluid with void viscosity �g and density �g yields in-
valid results. Instead, one should carefully access the
asymptotic limit from small �but finite� �=�g /�l and �
=�g /�l ratios using a general dispersion relation �5�, which
takes into account both the viscous and inertial effects of
both inner fluid and outer liquid, in either the Re�1 or Re
�1 limit. In addition, it is made clear that the old and well-
established dispersion relations for either Re=0 or Re=�
formerly applied to hollow jets ��g=�g=0; see Rayleigh �8�,
Vol. II, p. 362 and Chandrasekhar �9�, p. 527, respectively�
provide spatiotemporal stability results at radical odds with
the asymptotic ones derived from the general dispersion re-
lation �5� for �g=�g→0, at either vanishing or very large
�but finite� Re values, respectively.

To investigate the spatiotemporal stability of the chosen
flow configuration, i.e., a cylindrical gas jet, we reduce it to
a tractable geometry: an infinite cylindrical jet with radius Rj

of a very small density ��g� and viscosity ��g� fluid �gas�, in
an incompressible viscous liquid of density �l viscosity �l,
and surface tension �, both coflowing in the z direction with
a uniform velocity U relative to the observer. Under the as-
sumption of a small perturbation proportional to ei�kz−�t�, the
conservation equations of mass and momentum of the liquid
flow, together with the boundary conditions at both the jet
surface �including normal and tangential stress balance� and
at infinity, lead to the dispersion relation �DR� between the
perturbation wavelength � and its wave number k derived
elsewhere �5,10�. Following the well-established spatiotem-
poral formalism to describe the absolute-convective charac-
ter of axisymmetric instabilities in the �Re,We� parametrical
space of our problem, we seek for occurrences of d� /dk
=0 in both our general DR �5� and in the simplified one �1�
in the lower complex half plane Im�k��0 �where Im�k�
stands for the imaginary part of k�, with Im�����i	0
�11–15�. Special precaution has been taken to choose all so-
lutions whose spatial branches departing from the saddle
point d� /dk=0 originate from distinct halves of the k place
��14�, p. 484�, since these are the only ones providing an
absolute growth rate.

To reveal the roots of the symmetry breakdown between
liquid jets in vacuo and hollow jets, we start from a simpli-
fied dispersion relation applicable to hollow jets where �g
and �g are set equal to zero:

kv
4 − k4 + 2k2K1�k�

K0�k��2kkv
K1��kv�
K1�kv�

− �k2 + kv
2�

K1��k�
K1�k�	

=
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K1�k�
K0�k�

k�1 − k2� . �1�

Here, kv is defined as kv
2 =k2− i Re��−k�; the Reynolds and

Weber numbers are defined as Re=�lURj /�l and We
=�lU

2Rj /�, respectively, and K1��x�=−�K2�x�+K0�x�� /2. The
wave frequency �, time t, wave number k, and streamwise
coordinate z scale with U /Rj, Rj /U, 1 /Rj, and Rj, respec-
tively. It is worth noting that the above expression is sym-
metric with respect to the jet surface to the one used for
liquid jets by Leib and Golstein �6�: while they describe the*Electronic address: amgc@us.es
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motion of the inner domain only �liquid jet�, expression �1�
describes the dynamics of the infinite outer liquid domain
around the cylindrical hollow only. It agrees with Chan-
drasekhar’s expression �9� for the liquid jet case surrounded
by vacuum ��9�, p. 541, Eq. �158��, with two obvious differ-
ences: the positive sign at the last summand of the left-hand-
side term, and the locus of the singularity of the modified
Bessel function �x→� in the liquid jet case, x=0 in the
hollow case�. This is also a simplified version of the DR
obtained by Shen and Li �16�, who take into account the
density and compressibility of the inner gas but not its vis-
cous effects, of fundamental importance in the creeping flow
limit.

Then, it is worth analyzing first the solutions for the sim-
plified DR �1� with d� /dk=0, Im�k��0, and Im���	0,
summarized in Fig. 1. This model predicts a C-A instability
transition �jetting to bubbling� at moderate We numbers. An
interesting feature is the appearance of two families of solu-
tions �types 1 and 2� unfolding from a single one at Re�1
�see Fig. 1, left side of the plot�. We should emphasize that
these solutions do not necessarily indicate absolutely un-
stable modes. In fact, solutions with Real�k��kr�0 �where
Real�k� stands for the real Part of k� do not satisfy boundary
conditions at infinity. Type-1 solutions represent absolutely
unstable modes at the right of the line Real�k1��kr1=0 only,

since kr1 is negative to the left �making solutions spurious�.
The absolute-convective �C-A� instability transition is in this
case predicted at the loci indicated by the curve �i1=0. In
addition, all type-2 solutions have Real�k2��kr2�0 and are
therefore spurious if one strictly clings to the simplified
model, even though the 
kr2
 results are very small. We call
the attention of the reader to the topology of these type-2
spurious but important solutions �see Fig. 1� for the purposes
of this study, since they turn into true absolutely unstable
modes when the dynamical effects of the inner fluid are ac-
counted for: since the real parts of the wave number, kr2, are
negative but small �see Fig. 1�b��, a commensurately small
modification of the model in any direction will drastically
modify the convective-absolute nature of the instability tran-
sition.

Now, we turn to the use of the general DR �5� which
yields the results summarized in Fig. 2: here, the critical We
values are plotted as a function of Re for different values of
�=� ��=�g /�l and �=�g /�l�. It is worth emphasizing that
the parametric range explored in this study for both We and
Re span more than 12 orders of magnitude, from very small
to very large values. In this study, the inner fluid density and
viscosity are smaller than those of the outer liquid, and the
hollow jet case is reached when both � and � values vanish.
One finds that for arbitrarily small but finite � and �, the
relevant “true” absolutely unstable solutions exhibiting a
C-A transition �5� come close to those type-2 spurious solu-
tions of the simplified DR �1�. Topologically, the Riemann
surface of the general DR comes close to that of the simpli-
fied DR �1� as � and � vanish, but the asymptotic derivative
of the shift appears to be infinity at �=�=0, which produces
an abrupt departure of the solutions at that limit. This depar-
ture seems to be at the root of the predictive inability of the
simplified model, which neglects all dynamical effects com-
ing from the inner fluid. It would also explain why type-2
solutions of the simplified DR appear as spurious, while their
immediate “ancestors” from the general DR of the complete
model seem to be relevant solutions of the problem. In sim-

FIG. 1. �a� Solutions of the simplified DR �1� �“hollow” jet case,
�=�=0� with d� /dk=0, Im�k��0, and Im���
0, in the �Re,We�
plane. Type-1 solutions, �plotted for different values of the growth
rate �i1� are represented by continuous black lines. A thicker black
line denotes the theoretical convective-absolute transition ��i1=0�
predicted by this simplified hollow case. Type-2 solutions �for dif-
ferent growth rats �i2� are represented by light gray lines. �b� Real
part of the wave number kr2 of type-2 solutions, as a function of the
Reynolds number Re.

FIG. 2. Loci in the �Re,We� plane of the C-A transition for the
general DR �5�, for three values of �=�
1. This is an extended
�and slightly corrected� version of Fig. 1 in Ref. �5�. Observe that
the curves resemble the trends of type-2 solutions �gray lines� in
Fig. 1�a�.
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pler words, in C-A instability analysis the limits �→0 and
�→0 are singular limits for the hollow jet case, as we will
explicitly show in the Re�1 and Re�1 cases.

In consequence, the resulting critical We values of the
general DR predicting the C-A instability transition are dras-
tically different from the ones corresponding to the simpli-
fied one �compare Figs. 1 and 2� since type-1 and type-2
solutions of the latter DR �1� come from very different re-
gions of the Riemann surface �i.e., come from different dy-
namical balances of the wave modes�. Thus, the C-A transi-
tion predicted from the simplified model differs abruptly
from the asymptotic one predicted from the general DR, the
latter valid for all finite Re and We values. In conclusion, one
should exercise extraordinary caution at the time of using
well-established simplified dispersion relations like those ne-
glecting viscosity effects, in particular to predict C-A transi-
tions.

The limits Re→0 and Re→� represent situations worth
analyzing in detail as well, since both foster further drastic
simplifications of the general DR. A brief discussion of the
validity of these simplifications—as they are established in
the literature—is provided below.

The limit Re�1. Under this assumption, 
kv
2 
 �
−i Re��

−k� 
 �1, which when substituted in Eq. �1� and writing ��
=�−k yields

��2 +
K1�k�

We K0�k�
k�1 − k2� = 0 �2�

in accord with Rayleigh �8�. Expression �2� exhibits abso-
lutely unstable solutions for Weber numbers We�5.191 37,
above which convective instability is predicted. However, a
more careful consideration of the solutions of the general �5�
DR disclose that 
� 
 �1 and 
k 
 �1 when Real����1,
which makes 
kv

2
 indeterminate for large Re and We values.
Thus, predictions of convective instability using DR �2� are
invalid, making that very simple model inconsistent for a
spatiotemporal analysis. Now, using the general DR, the pre-
dicted critical We* for the C-A instability transition, as a
function of the density ratio �=�g /�l, is asymptotically

We* = 0.469/� �3�

for Re�1 and ��1 �Fig. 2; see also Fig. 1 in Ref. �5��. This
makes We* unbounded for vanishing � values, which shows
explicitly the singular nature of the hollow jet ��→0� limit.
In consequence, by harnessing the general DR through care-
ful asymptotic paths, one concludes that a hollow jet in an
infinite inviscid liquid domain is always absolutely unstable.

The limit Re�1. On the other hand, following the same
procedure as in ��9�, pp. 527 and 541�, one may write the
following simplified DR in the limit Re=0:

� = k + i
1 − k2

2Ca�1 + k2 − �kK0�k�/K1�k��2�
�4�

where Ca=We/Re is the capillary number. This limiting DR
does not show solutions of d� /dk=0 and Im���	0 in the
lower half plane �k� for Ca	1. In sharp contrast, riding on

the relevant solutions of the general DR and following a
consistent asymptotic path as Re→0 �see Fig. 2�, one arrives
at absolutely unstable asymptotic solutions showing a C-A
transition at a critical capillary number Ca* plotted in Fig. 3
as a function of the viscosity ratio �=�g /�l�1. One ob-
tains, for ��1,

Ca* = 0.139/�1/2, �5�

again showing the singular nature of the hollow jet case
�→0.

This limit expression means that for a vanishing viscosity
ratio �, in the creeping flow limit, the critical capillary num-
ber becomes unbounded. However, if the hollow is filled
with any tangible fluid �finite � and � values� and the cof-
lowing liquid moves faster than a critical velocity given by

U* = 0.139���g�l�−1/2, �6�

the jet becomes convectively unstable, which means that the
jet becomes stable at a fixed distance from the nozzle inde-
pendently of the jet radius. This striking result means that, in
the creeping flow limit, a steady fluid jet could be made
arbitrarily thin �Rj→0 with Re→0, compatible with the con-
tinuum hypothesis� in a coflowing liquid if it moves faster
than U*, supporting the existence �stability� of the steady
solution obtained by Zhang �17� for a vanishingly small gas
spout entrained in a coflowing liquid, a fundamental result
that was under controversy �18�.
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FIG. 3. C-A transition capillary numbers Ca* as a function of �
��1�, in the limit Re→0, from the general DR �10�.
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